Code: 17MEMD2T4

I M.Tech - II Semester - Regular/Supplementary Examinations OCTOBER - 2020

ADVANCED ROBOTICS (MACHINE DESIGN)

Duration: 3 hours
Max. Marks: 60
Answer the following questions.

1. a) Classify robots according to control method and explain in detail about each type.
b) List out the present and future applications of robot and explain atleast two current applications in detail.
(OR)
2. a) Find the transformation matrices for the following operations on the point $2 \mathrm{i}+8 \mathrm{j}+3 \mathrm{k}$ and find final position of point. 8 M
i) Rotate 30° about x -axis and then translate -5 units along y-axis.
ii) Translate 2 units along y-axis and rotate 60° about z- axis.
b) Describe representation of rigid body with respect to a reference frame.
3. a) Write short notes on:
i) Direct and inverse kinematics
ii) DH convention
b) Derive the kinematic equations for the 3 DoF Jointed arm robot giving co-ordinate frame diagram and the kinematic parameters.
(OR)
4. Find the manipulator Jacobean matrix $j(q)$ of the two-axis planer articulated robot shown in figure.

5. a) What is Lagrangian? Give derivation of Lagrangian-Euler formulation of joining force/torque for single link manipulator of given length and mass.

9 M
b) Explain the following briefly as applied to robot arm dynamics analysis.
i) Kinematic energy
ii) Potential energy
iii) Joint velocities

> (OR)
6. a) Explain the following terms:
i) Trajectory
ii) Joint space trajectory planning.
b) A single link robot with a rotary joint is motionless at $\Theta_{0}=15^{0}$ it is desired to move the joint in a smooth manner to $\Theta_{f}=75^{0}$ in 3 sec . Find the coefficients of a cubic polynomial which accomplishes this motion and brings the arm to rest at the goal.
7. a) Draw a pole zero map for the following transfer function

$$
T F=\frac{s(s+3)}{(s+5)(s+2)\left(s^{2}+4 s+5\right)}
$$

b) Explain about proportional-plus-integral controllers. 7 M (OR)
8. a) Differentiate pneumatic, hydraulic and electric actuators.
b) Explain the following:

9 M
i) Potentiometer
ii) Resolver
iii) Encoders

